

Emissão de Gases de Efeito Estufa — 2050: Implicações Econômicas e Sociais do Cenário de Plano Governamental

PROJETO IES-Brasil – 2050

CENTRO CLIMA/COPPE/UFRJ

Apoio:

Instituto Clima e Sociedade (ICS)

WWF - Brasil

PROJETO IES-Brasil – 2050

Centro de Estudos Integrados sobre Meio Ambiente e Mudanças Climáticas (Centro Clima/COPPE/UFRJ)

Cenário de Emissão de GEE - 2050 Oferta de Energia

Relatório Técnico

Autores:

Sergio Henrique Ferreira da Cunha, Amaro Olímpio Pereira Jr e Gabriel Castro

Emissão de Gases de Efeito Estufa — 2050: Implicações Econômicas e Sociais do Cenário de Plano Governamental

CENTRO CLIMA/COPPE/UFRJ

COORDENAÇÃO GERAL

Emilio Lèbre La Rovere

COORDENAÇÃO EXECUTIVA

Carolina Burle Schmidt Dubeux

MODELAGEM MACROECONÔMICA

William Wills (coordenador) Julien Lefèvre Carolina Grottera

Setor de Agricultura, Floresta e Outros Usos da Terra (AFOLU)

Carolina B.S. Dubeux (coordenadora) Michele Karina Cotta Walter Ana Maria Rojas Méndez Isabella da Fonseca Zicarelli

Setor Energético

Amaro Olímpio Pereira Junior (coordenador) Sergio Henrique Ferreira da Cunha Gabriel Castro Mariana Weiss de Abreu

Setor Industrial

Amaro Olímpio Pereira Junior (coordenador) Felipe Santos C.B. Santos Carolina B.S. Dubeux

Setor de Resíduos

Carolina B.S. Dubeux Angéli Viviani Colling

Setor de Transporte

Márcio de Almeida D'Agosto (coordenador) Daniel Neves Schmitz Gonçalvez (Laboratório de Transporte de Carga – LTC/COPPE/UFRJ) Luiza Di Beo Oliveira

Integração dos Modelos Energéticos de Demanda

Claudio Gesteira

Colaboração

Daniel Oberling Saulo Machado Loureiro

Assistente de Coordenação

Isabella da Fonseca Zicarelli

Apoio

Carmen Brandão Reis Elza Ramos

Sumário

1.	Introdução	1
	1.1. Estrutura da Oferta Interna de Energia	1
2.	Metodologia de Calculo da Oferta de Energia	5
	2.1. Cadeias energéticas	
	2.2. O Modelo de Projeção de Matriz Energética (MATRIZ)	
3.	Descrição do Cenário de Plano Governamental (CPG)	
	3.1. Premissas Utilizadas na Modelagem	
	3.2. Dados de Entrada do Modelo MATRIZ	12
4.	Principais Resultados	17
	4.1. Resultados relativos à Oferta de Energia Elétrica e suas emissões	
	4.2. Resultados relativos à Oferta de Combustíveis e suas emissões	
5.	Conclusões	
6.	Prospecção tecnológica para cenários de mitigação	27
	Referências Bibliográficas	

Tabelas

Tabela 1.	Mistura de biodiesel no diesel considerada no CPG (2015-2050)	12
Tabela 2.	Dados das novas fontes de geração de energia elétrica considerados no CPG	13
Tabela 3.	Evolução de demanda de energia final no CPG (2015-2050)	14
Tabela 4.	Evolução de demanda do setor energético para no CPG (2015-2050)	14
Tabela 5.	Perfil de produção considerado para as UPGNs	16
Tabela 6.	Evolução da capacidade instalada no CPG (MW)	17
Tabela 7.	Evolução da geração por fonte no CPG (MWano)	18
Tabela 8.	Evolução do fator de capacidade no CPG (%)	19
Tabela 9.	Participação por fonte na geração total de energia elétrica (%)	19
Tabela 10.	Evolução das emissões da geração termelétrica e carvoejamento no CPG (MtCO₂eq)	20
Tabela 11.	Evolução da oferta de petróleo no CPG (Mbbl/dia)	20
Tabela 12.	Evolução da oferta de gás natural no CPG (M m³/dia)	21
Tabela 13.	Evolução da produção anual de combustíveis no CPG (ktep)	21
Tabela 14.	Oferta Interna de Energia no cenário CPG (Mtep)	24
Tabela 15.	Evolução das emissões fugitivas no CPG (2015-2050)	25
Tabela 16.	Evolução das emissões do setor energético no CPG (2015-2050)	25
Tabela 17.	Novas tecnologias de oferta de energia para no horizonte de 2050 (adicionais às do cenário	CPG)27

Figuras

Figura 1.	Participação das Fontes na Geração de Energia Elétrica em 2014	3
Figura 2.	Oferta Interna de Energia em 2014	4
Figura 3.	Representação simplificada das cadeias energéticas no modelo MATRIZ	
Figura 4.	Representação simplificada das cadeias energéticas no modelo MATRIZ	7
Figura 5.	Capacidade de refino	15
Figura 6.	Perfil de produção de derivados	16
Figura 7.	Gráfico 5: Matriz Energética em 2014 (%)	
Figura 8.	Gráfico 6: Matriz Energética em 2030 (%)	
Figura 9.	Gráfico 7: Matriz Energética em 2050 (%)	

Setor Oferta de Energia no Brasil

1. Introdução

O presente relatório tem por objetivo apresentar a evolução da Oferta de Energia e as respectivas emissões de Gases de Efeito Estufa (GEE) no Brasil, no período 2015 a 2050, considerando um Cenário de Plano Governamental (CPG) que assume uma continuidade a longo prazo das políticas de mitigação já existentes. A simulação desta evolução é feita com auxilio do modelo MATRIZ (Modelo de Projeção de Matriz Energética), desenvolvido pelo Centro de Pesquisas de Energia Elétrica (CEPEL) com apoio da equipe do LIMA/COPPE/UFRJ.

A partir da simulação da evolução das demandas setoriais e da oferta de energia no horizonte 2050 para o CPG, foram calculadas também as respectivas Implicações Econômicas e Sociais (IES) para o Brasil, com auxílio de um modelo de equilíbrio geral computável, denominado IMACLIM-BR, ajustado para a economia brasileira pela COPPE com o apoio do CIRED¹, instituição que o desenvolveu. O IMACLIM-BR é um modelo híbrido que calcula um conjunto de indicadores, os quais permitem avaliar as implicações econômicas (em termos de geração de emprego, renda, etc.) das políticas de mitigação das mudanças climáticas consideradas para o Brasil. A comparação da variação dos valores desses indicadores entre diversos cenários de mitigação fornece uma espécie de balizamento para os resultados/consequências que se pode esperar da adoção de um conjunto de medidas de mitigação além daquelas contempladas pelo CPG.

A modelagem do setor de Oferta de Energia e a simulação de sua operação energética realizada com auxílio do modelo MATRIZ possibilitam, como será visto a seguir, que se estimem as emissões das centrais elétricas de serviço público (transformação) e das carvoarias, assim como, das emissões fugitivas de óleo e gás e fugitivas de carvão mineral. Além das emissões de oferta, foram estimadas também as emissões decorrentes da autoprodução de energia elétrica e do consumo final do setor energético (consumo de combustíveis), com base nos níveis de atividade obtidos pelo modelo MATRIZ.

1.1. Estrutura da Oferta Interna de Energia

A oferta nacional de energia foi modelada considerando suas principais fontes primárias (ex: petróleo, gás natural, carvão mineral, urânio, hidráulica, biomassa, eólica, solar) e secundárias (ex: derivados de petróleo, coque de carvão mineral, eletricidade, etanol, carvão vegetal).

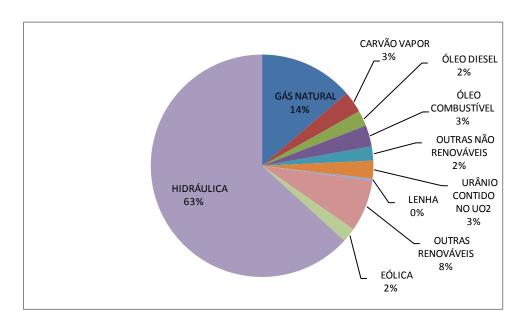
 $^{1}\mathrm{CIRED}\,$ - Centre International de Recherche sur l'Environnementet le Developpement, França.

-

A modelagem toma como ponto de partida os dados e estrutura do Balanço Energético Nacional (BEN). Na construção do CPG, procurou-se basear, sempre que possível, nos planos oficiais de energia do governo brasileiro em vigor. Neste setor, as principais referências oficiais são o Plano Nacional de Energia (PNE), os Planos Decenais de Energia (PDE) e o próprio Balanço Energético Nacional (BEN), publicados pela Empresa de Pesquisa Energética (EPE). Assim, no presente estudo foram utilizados preferencialmente dados e critérios extraídos dos relatórios parciais e resultados preliminares divulgados do PNE 2050, ora em elaboração pela EPE, além das informações constantes do PDE 2024 e do BEN 2015, já publicadas.

Apresentaremos a seguir um breve resumo destes dados, a título de caracterização das especificidades do sistema energético brasileiro, que é bastante diferente da média mundial.

De acordo com o BEN 2015, o Brasil conta com reservas provadas petróleo de 16,2 bilhões de barris, que permitiu ao país produzir 2,25 milhões de barris por dia (Mbpd) em 2014, sendo 85% offshore. O setor de petróleo conta com uma capacidade nominal de refino de 2,09 Mbpd. Entretanto, para atender às especificações técnicas de algumas refinarias, um mínimo de 339 mil bpd devem continuar sendo importados.


O país conta ainda com reservas provadas de gás natural que somam 471 bilhões m³. Tais reservas possibilitaram a produção em 2014 de 87,4 Mm³/dia, que corresponderam a cerca de 71% do consumo total. O restante é atendido via regaseificação de gás natural liquefeito (GNL) e importação da Bolívia (GASBOL). O setor contou com uma capacidade de processamento em 2014 de 92,9 milhões m³/dia, segundo dados do anuário estatístico da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP).

O parque gerador elétrico brasileiro é hidrotérmico, caracterizado pela forte presença de usinas hidrelétricas, com grandes reservatórios de regularização plurianual e a fio d'água, localizadas em diferentes bacias hidrográficas, que ficam afastadas dos centros consumidores. O sistema, por isso, é interligado por extensas linhas de transmissão. A fonte hidráulica é complementada por usinas térmicas, convencionais e nucleares, parques eólicos, cogeração a partir de biomassa (principalmente, o bagaço de cana), além de uma incipiente geração distribuída de base solar, mas que deverá crescer significativamente até o fim do horizonte, incluindo parques solares. De acordo com o BEN 2015, em 2014 o Brasil possuía um parque instalado de geração de energia elétrica com capacidade de aproximadamente 134 GW, sendo mais de 89 GW de usinas hidrelétricas, 37,8 GW de termelétricas convencionais, 2 GW de nucleares e 4,9 GW de usinas eólicas. Estima-se que o

potencial hidrelétrico remanescente (principalmente na região amazônica) seja de cerca de 95 GW. A Figura 1 mostra a participação de cada fonte na geração de energia elétrica.

Figura 1. Participação das Fontes na Geração de Energia Elétrica em 2014 Fonte: BEN 2015

No setor sucroalcooleiro são processadas anualmente cerca de 193 milhões de toneladas de caldo de cana que produziram, em 2014, cerca de 28,4 milhões de m³ de etanol, segundo dados do BEN 2015. O setor produz ainda 161 milhões de toneladas de bagaço que são utilizadas no processo de produção de açúcar e álcool e na geração de energia elétrica.

O carvão mineral é o combustível fóssil mais abundante no País, que conta com uma reserva de 32,7 bilhões de toneladas concentradas na região Sul. Em 2014, foram produzidos 7,9 milhões de toneladas de carvão energético, que são utilizadas basicamente para geração de eletricidade. Atualmente não há produção doméstica de carvão metalúrgico, sendo este, portanto, 100% importado.

As reservas de urânio no Brasil somam 309 mil toneladas, representando a sexta maior do mundo. Entretanto, o país vem ampliando gradativamente a capacidade nacional de processamento do combustível a ser utilizado em suas centrais termonucleares.

A produção de lenha em 2014 foi de 79,8 milhões de toneladas, sendo aproximadamente 30% para produção de carvão vegetal, usado principalmente no setor metalúrgico, e 59% utilizados com fins

energéticos diversos, com destaque para o consumo dos setores metalúrgico, agropecuário e residencial.

A Figura 2 ilustra a participação relativa das diversas fontes na matriz energética nacional.

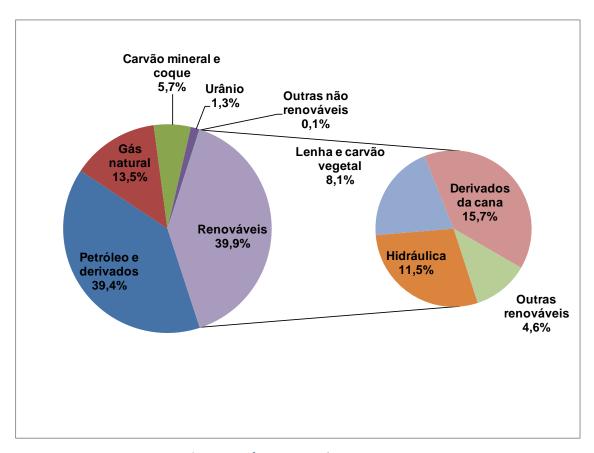


Figura 2. Oferta Interna de Energia em 2014

Fonte: BEN 2015

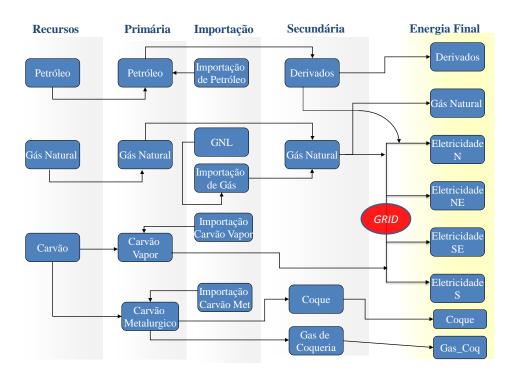
2. Metodologia de Cálculo da Oferta de Energia

A metodologia utilizada no projeto IES2 para a determinação da Oferta de Energia do cenário de referência no horizonte 2050 é basicamente a mesma que foi utilizada no projeto IES-Brasil (La Rovere et al, 2016). Entretanto, alguns aperfeiçoamentos metodológicos foram introduzidos, merecendo destaque a substituição do modelo computacional de calculo da Oferta de Energia para uma dada projeção da demanda final de energia. O Modelo MESSAGE de otimização da oferta de energia, desenvolvido pelo IIASA e aperfeiçoado pela IAEA, foi substituído pelo Modelo de Projeção de Matriz Energética (MATRIZ /ENCAD), desenvolvido pelo CEPEL (2016). Esta substituição de modelos exigiu os seguintes passos preliminares preparatórios para a execução do projeto:

- Negociação e assinatura do Termo de Licenciamento de Uso de programa computacional, entre CEPEL e COPPETEC (ver documento em anexo);
- Instalação dos modelos ENCAD (gerenciador de base de dados) e MATRIZ (otimização da expansão energética) no servidor do LIMA/COPPE/UFRJ;
- 3. Treinamento de 12 membros da equipe do projeto na utilização das ferramentas computacionais ENCAD e MATRIZ, realizado em 18/03/16, nas instalações do CEPEL;
- 4. Reuniões com a equipe do CEPEL no LIMA para testes e validação da instalação dos modelos no servidor do laboratório;

A seguir, apresentaremos uma breve descrição das principais características da modelagem adotada no projeto IES2 para cálculo da Oferta de Energia a todos os setores econômicos considerados.

2.1. Cadeias energéticas


Dado um cenário de consumo final dos diversos energéticos, existem inúmeras estratégias possíveis de oferta de energia capazes de assegurar o suprimento dessa demanda ao longo do tempo.

De um modo geral, pode-se dizer que o processo de planejamento do sistema energético busca "otimizar" os fluxos energéticos ao longo das diversas cadeias de transformação, desde os recursos naturais ou reservas, passando pelas formas primárias e secundárias de energia até chegar à energia final entregue nos pontos de consumo. Este processo de otimização busca encontrar o "conjunto ótimo de fluxos energéticos", ou "solução ótima", que assegure o suprimento do vetor de demanda dos consumidores finais a cada quinquênio, atendendo a todas as restrições pré-estabelecidas, ao menor custo possível acumulado ao longo do horizonte de estudo (incluindo ou não uma eventual precificação das emissões de carbono).

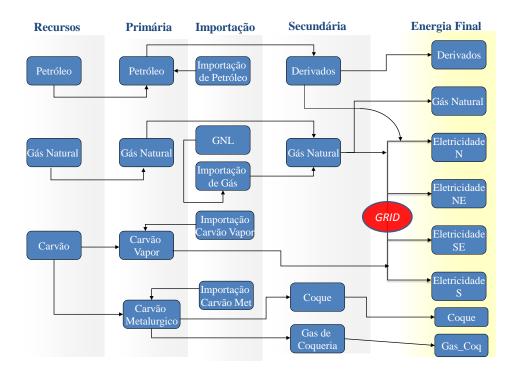

Para tanto, é necessário representar, o mais fielmente possível, as cadeias energéticas que compõem o sistema de oferta de energia no País. O sistema energético brasileiro inclui as cadeias de petróleo e gás natural, carvão mineral e vegetal, biomassa, eletricidade e urânio. Algumas cadeias incluem também trocas de energia com o exterior, ou seja, importações e exportações. A Figura 3 e a Figura 4 ilustram de forma muito simplificada as cadeias energéticas que foram consideradas no presente estudo.

Figura 3. Representação simplificada das cadeias energéticas no modelo MATRIZ Fonte: Elaboração própria

Figura 4. Representação simplificada das cadeias energéticas no modelo MATRIZ Fonte: Elaboração própria

As cadeias energéticas podem ser representadas com diferentes níveis de detalhamento, através de um maior ou menor número de tecnologias. As tecnologias podem consumir uma ou mais formas de energia e produzir também uma ou mais formas de energia, a coeficientes constantes. As tecnologias também podem apresentar um ou mais modos de operação, o que permite representar tecnologias de transporte com fluxos energéticos "bidirecionais", como é o caso de linhas de transmissão.

2.2. O Modelo de Projeção de Matriz Energética (MATRIZ)

O Modelo de Projeção de Matriz Energética (MATRIZ) foi concebido como uma ferramenta de apoio a estudos de planejamento da expansão do sistema energético a longo prazo, como os Planos Nacionais de Energia (PNE), elaborados pelo Ministério de Minas e Energia (MME) e pela Empresa de Pesquisa Energética (EPE).

Resumidamente, trata-se de um modelo computacional de grande porte, baseado em programação linear, que recebe como input exógeno os dados relativos à evolução da demanda dos diferentes energéticos e disponibilidade de recursos das fontes primárias, secundárias e finais, e as características básicas das "tecnologias", obtendo como resultado os valores das capacidades de

produção de energia elétrica e de combustíveis e o valor ótimo dos fluxos energéticos em todas as cadeias energéticas consideradas, incluindo eventuais importações e exportações, quinquenalmente, para todo o horizonte de estudo. Cabe observar que, na definição do problema de otimização da expansão, alguns acréscimos de capacidade de produção e/ou transporte de energia (elétrica ou combustíveis) podem ser admitidos como dados de entrada exógenos.

O modelo MATRIZ procura encontrar dentre as inúmeras "soluções viáveis" do problema de otimização da expansão, aquela que minimiza o valor presente do custo total de investimento e de operação do sistema energético, também denominada "solução ótima" (podendo haver mais de uma solução de custo mínimo). Define-se como solução viável do problema, qualquer alternativa de oferta dos diversos energéticos capaz de suprir as demandas quinquenais de energia previstas para o cenário (demandas de eletricidade por subsistema, combustíveis por tipo, etc.), satisfazendo a todas as demais restrições fornecidas (limites de capacidade das fontes de geração de energia elétrica, fatores de capacidade mínimo e máximo por fonte, limites de transporte entre regiões, capacidade de processamento e perfis de refino das refinarias existentes e novas, limites de capacidade de processamento, importação e/ou regaseificação de gás natural, disponibilidade de bagaço de cana para geração termelétrica, etc.).

De modo geral, as tecnologias são representadas de forma agregada, visto que a representação individualizada aumentaria significativamente a complexidade da análise integrada das cadeias energéticas. Vale ressaltar que, para o sistema energético brasileiro, a análise integrada torna-se cada vez mais importante em função da perspectiva de expansão da produção de cana-de-açúcar para produção de etanol e da oferta de gás natural com a exploração das reservas do Pré-Sal. A expansão destas cadeias impacta a cadeia de petróleo, pela competição entre o etanol e derivados de petróleo nos meios de transporte e a cadeia de eletricidade, através das plantas de cogeração de bagaço de cana e termelétricas a gás natural.

Estudos de longo prazo utilizando o modelo MATRIZ permitem definir uma estratégia de expansão das cadeias energéticas considerando as suas interdependências, restrições ambientais e políticas de governo. Esta estratégia pode, então, ser levada aos planejamentos setoriais de expansão, para se obter um planejamento mais detalhado, levando-se em conta as características técnicas, econômicas e de impactos ambientais dos projetos individuais das tecnologias.

A diferença de representação individualizada de tecnologias em modelos setoriais e agregada em modelos de sistemas energéticos indica um procedimento iterativo entre os modelos setoriais e o modelo MATRIZ a ser adotado nos estudos de planejamento. Para tanto, o programa MATRIZ oferece

facilidades para se incluir restrições nas variáveis de investimento e de operação, além de penalidades nos fluxos energéticos e restrições ambientais.

A utilização do modelo MATRIZ permite traçar cenários de expansão otimizada da capacidade de produção de todas as fontes de energia disponíveis no país no horizonte 2050 e consolidar projeções da Matriz Energética Brasileira consistentes com as premissas estabelecidas na definição do Cenário de Plano Governamental (CPG).

Como consequência, é possível fornecer ao modelo macroeconômico IMACLIM resultados mais precisos acerca da evolução do consumo dos diversos energéticos, assim como, do tipo de investimento necessário para a expansão da oferta das diversas fontes de energia capaz de satisfazer este crescimento das demandas no cenário considerado.

3. Descrição do Cenário de Plano Governamental (CPG)

Conforme mencionado anteriormente, a construção do Cenário de Plano Governamental (CPG) assume que existirá uma continuidade a longo prazo das políticas de mitigação já em curso. Assim, tomou-se como base para esta construção, sempre que possível, os planos oficiais do governo brasileiro vigentes no momento, tais como, o Plano Nacional de Energia (PNE), os Planos Decenais de Energia (PDE) e o Balanço Energético Nacional (BEN), publicados, ou em vias de publicação, pela Empresa de Pesquisa Energética (EPE).

O CPG já considera, portanto, uma ampla gama de atividades de mitigação, conforme definido pela Política Nacional sobre Mudança do Clima – PNMC, instituído pela Lei Nº 12.187/09, regulamentado pelo Decreto Nº 7.390/10 e anunciado no contexto da 15a Conferência das Partes da Convenção Quadro das Mudanças Globais do Clima. Adicionalmente, é considerado também a iNDC ("Intended Nationally Determined Contribution", ou Contribuição Pretendida Nacionalmente Determinada), que foram os compromissos assumidos pelo Brasil na 21° Conferência das Partes (COP) da UNFCCC (Quadro das Nações Unidas sobre Mudanças Climáticas), em 2015.

A iNDC brasileira apresenta os seguintes compromissos relativos às atividades de produção e uso da energia:

- Aumentar a participação de bioenergia sustentável na matriz energética brasileira para aproximadamente 18% até 2030, expandindo o consumo de biocombustíveis, aumentando a oferta de etanol, inclusive por meio do aumento da parcela de biocombustíveis avançados (segunda geração), e aumentando a parcela de biodiesel na mistura do diesel;
- Alcançar uma participação estimada de 45% de energias renováveis na composição da matriz energética em 2030;
- Obter ao menos 66% de participação da fonte hídrica na geração de eletricidade, em 2030,
 não considerando a autoproduzida;
- Expandir o uso de fontes renováveis, além da hidráulica, na oferta interna de energia para uma participação de 28% a 33% até 2030;
- Expandir o uso doméstico de fontes de energia não fóssil, aumentando a parcela de energias renováveis (além da hidráulica) no fornecimento de energia elétrica para ao menos 23% até 2030, considerando o aumento da participação de eólica, biomassa e solar;
- Alcançar 10% de ganhos de eficiência no setor elétrico até 2030.

Como todo exercício de cenarização, o CPG também deve ser entendido como uma "trajetória possível de futuro", construída a partir de um processo de planejamento setorial indicativo, e não como uma verdade absoluta ou uma projeção de longo prazo. Serve, portanto, para antecipar tendências, que geram oportunidades e trazem ameaças, muitas das quais demandam um posicionamento estratégico já no curto prazo. No horizonte de tempo deste estudo, o cenário da demanda de energia, por exemplo, depara-se com um grande número de incertezas das mais variadas naturezas, incluindo configuração de infraestrutura da economia, padrões de mobilidade urbana, competitividade tecnológica e de matérias-primas, além do padrão de consumo de energia, apenas para citar algumas. A oferta também se depara com grandes incertezas, relativas aos custos e prazos previstos para as obras de expansão do sistema, assim como, à variabilidade e disponibilidade da energia das fontes renováveis. Vale ressaltar que o CPG não considerou os possíveis impactos das mudanças climáticas sobre a oferta primária de energia no horizonte 2050.

A essas informações foram agregadas as contribuições do Comitê de Elaboração de Cenários (CEC) do projeto IES2, que reviu e complementou os dados necessários para a simulação do cenário com os modelos MATRIZ e IMACLIM-BR.

3.1. Premissas Utilizadas na Modelagem

Para a elaboração dos cenários de projeção da oferta de energia foi utilizada uma base de dados extraída de relatórios elaborados por empresas privadas e estatais, como a Empresa de Pesquisa Energética (EPE) e a Petrobras, entre outras. Foram utilizadas também informações coletadas em agências reguladoras, como a Agência Nacional de Energia Elétrica (ANEEL) e a Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP), e também do Operador Nacional do Sistema Elétrico (ONS). Também foram utilizadas informações disponibilizadas por instituições internacionais, tais como, a International Energy Agency (IEA) e o U.S. Energy Information Administration (EIA/DOE).

Cabe destacar algumas premissas básicas fundamentais para a caracterização dos cenários, que foram estabelecidas em reuniões conjuntas com os membros do CEC:

- Preço internacional do petróleo: 85 US\$/bbl, a partir de 2020.
- Produção nacional de petróleo: 5,5 milhões de barris/dia, em 2050.
- Produção de gás natural: 159 milhões de m³/dia em 2050 (descontado reinjeção e perdas).

- Construção de 385 mil barris/dia de nova capacidade de refino de petróleo, além de RNEST (Refinaria do Nordeste ou Abreu e Lima) e COMPERJ (Complexo Petroquímico do Rio de Janeiro).
- Expansão da produção de etanol: 61,3 bilhões de litros, em 2050, sendo 20% etanol de segunda geração.
- Mistura do biodiesel no diesel, conforme tabela a seguir:

Tabela 1. Mistura de biodiesel no diesel considerada no CPG (2015-2050)

	Biodiesel (mistura em volume)						
Até 2014, inclusive	Ver BEN, 2015						
	Todos os setores menos agricultura	Agricultura					
2015	В7	B7					
2016	В7	B7					
2017	B8	B8					
2018	В9	В9					
2019	B10	B10					
2020	B10	B10					
2025	B10	B10					
2030	B11	B12					
2040	B13	B15					
2050	B15	B18					

Nota: a penetração do Biodiesel na agricultura nas regiões Norte e Centro-oeste será maior em 2050, onde será utilizado B20 enquanto no resto do país será utilizado B15. A média em agricultura será em torno de B18.

Fonte: Elaboração própria

É importante observar que o cenário CPG, por levar em conta as políticas energéticas governamentais de médio e longo prazo, já embute algumas medidas que podem ser consideradas como "medidas de mitigação" com relação ao estágio das práticas e das tecnologias em uso hoje no setor energético. Assim, o Programa de Produção de Médios e Gasolina (PROMEGA), por exemplo, é uma medida em curso que aumenta a capacidade de processamento e a eficiência das refinarias existentes e, portanto, contribui para a redução da demanda de petróleo e das emissões fugitivas. No setor elétrico, podem-se citar também as medidas adotadas para favorecer a expansão de fontes renováveis de geração no Sistema Interligado Nacional — SIN, tais como os leilões de fontes alternativas, que evitam uma maior expansão das usinas a combustíveis fósseis.

3.2. Dados de Entrada do Modelo MATRIZ

Os dados de entrada necessários para execução do Modelo MATRIZ podem ser agrupados da seguinte forma:

- 1) Configuração do sistema energético;
- 2) Capacidades históricas, vidas úteis, coeficientes técnicos de transformação, fatores de capacidade máxima e mínima das tecnologias (extração, processamento e transporte);
- 3) Demandas das diversas formas de energia (energia elétrica, etanol, bagaço, lenha, carvão, gás natural, GLP, gasolina, nafta, diesel, biodiesel, óleo combustível e QAV), para cada subsistema de cada cadeia energética e para cada período do horizonte de planejamento;
- Capacidade máxima de expansão das diversas tecnologias, modos de operação, energia média, custos de investimento e de operação;
- 5) Penalidades para os impactos ambientais;
- 6) Curvas sazonais e comportamento na ponta e fora da ponta para as tecnologias relacionadas às fontes de energia renováveis e para as demandas de energia;
- 7) Dados de reservas de petróleo, gás natural, carvão, urânio, etc.
- 8) Custos unitários e taxa de desconto.

Abaixo, encontram-se as informações relativas aos dados básicos das usinas de geração de energia elétrica que foram consideradas no modelo MATRIZ.

Tabela 2. Dados das novas fontes de geração de energia elétrica considerados no CPG

Forte	Capacidade	Custo de	investimen	to (R\$/kW)	Custo de O&M	Fator de	
Fonte	típica (MW)	atual	2030	2040	fixo¹ (R\$/kW/ano)	capacidade (%)	
Bagaço	30	5.000	5.000	5.000	200	52	
Carvão Nacional*	500	8.347	8.347	8.347	221	85	
Carvão Importado*	500	4.480	4.480	4.480	157	80	
Eólica	30	5.400	5.100	4.970	137	42	
Termelétrica a lenha*	50	7.345	6.540	5.880	110	70	
Gás Natural CC*	500	3.339	3.339	3.339	85	70	
Nuclear*	1000	18.029	18.029	18.029	551	90	
Heliotérmica (CSP)	200	23.371	17.361	12.353	467	55	
UHE (Centro-sul)	200	7.345	7.345	7.345	200	55	
UHE (Amazônia)	2000	6.010	6.010	6.010	200	55	
Fotovoltaica centralizada	50	8.514	5.783	4.480	87	25	
Fotovoltaica distribuída	0,003	11.418	7.572	5.870	87	18	

¹ Para o primeiro ano do horizonte de simulação. Para algumas tecnologias, considerou-se uma diminuição no custo de O&M fixo, referente à curva de aprendizado.

Fonte: EPE, IEA, EIA/DOE

^{*} Usinas em que a geração independe de fatores climáticos. Nesses casos a geração é definida pelos preços relativos. Como a simulação do modelo Matriz é simplificada, arbitrou-se um FC para a usina no sistema brasileiro.

Nas simulações do MATRIZ, a demanda anual de energia (consumo final) foi tomada como exógena (dado de entrada), sendo proveniente de análises e totalizações dos setores energético, residencial, de serviços (comercial e público), agropecuário, de transportes e industrial. A Tabela 3 apresenta as séries de valores (em ktep) consideradas para cada energético, em cortes quinquenais, sem o setor energético. A Tabela 4 apresenta a demanda apenas do setor energético.

Tabela 3. Evolução de demanda de energia final no CPG (2015-2050)

1.	224		000=		0005			
ktep	2015*	2020	2025	2030	2035	2040	2045	2050
Gás natural	12.654	15.128	17.359	19.377	24.061	30.415	37.128	39.701
Carvão vapor	3.855	4.461	4.966	4.791	4.844	6.095	7.282	6.996
Lenha	16.670	13.722	14.542	14.962	15.153	15.847	16.147	16.527
Produtos da cana	15.512	15.450	18.016	20.573	22.716	24.788	27.784	31.070
Outras fontes primárias	7.013	6.524	7.917	8.992	11.132	14.266	16.793	18.033
Óleo diesel	46.695	44.625	47.328	53.151	57.029	61.678	66.296	71.633
Óleo combustível	2.979	3.548	3.836	4.025	4.322	5.162	5.830	6.033
Gasolina	23.306	18.305	16.164	14.879	13.690	12.392	10.557	8.882
GLP	8.094	9.103	9.962	10.656	11.037	11.756	12.298	12.182
Nafta	6.929	7.223	9.026	10.829	12.778	14.727	16.116	17.504
Querosene	3.615	3.941	4.556	5.535	6.324	7.258	8.017	8.955
Gás de coqueria	1.148	1.411	1.735	1.751	2.141	2.969	3.564	3.457
Coque de carvão mineral	7.886	8.835	9.842	9.284	10.040	12.052	14.033	12.952
Eletricidade	42.204	46.598	53.214	57.495	64.614	76.171	87.402	92.503
Carvão vegetal	3.901	4.247	5.393	5.400	5.964	7.769	9.395	9.234
Álcool etílico anidro e hidratado	15.927	15.481	17.299	20.005	23.024	25.882	27.507	29.406
Outras secundárias de petróleo	7.572	8.158	9.158	8.927	8.686	10.353	12.101	11.546
Produtos não energéticos de petróleo	6.731	8.532	9.785	11.639	13.631	15.439	17.277	19.126
Alcatrão	228	102	102	114	127	222	267	267
Total	232.920	235.393	260.201	282.384	311.315	355.242	395.793	416.007

* Realizado Fonte: BEN 2016 e elaboração própria

 Tabela 4.
 Evolução de demanda do setor energético para no CPG (2015-2050)

ktep	2015*	2020	2025	2030	2035	2040	2045	2050
Gás natural	6.112	4.203	4.823	5.384	6.685	8.451	10.316	11.031
Óleo diesel	1.338	1.158	1.228	1.379	1.480	1.600	1.720	1.859
Óleo combustível	244	393	425	446	479	572	647	669
GLP	29	25	28	29	30	32	34	34
Gás de coqueria	188	216	266	269	328	456	547	530
Eletricidade	2.742	2.736	3.124	3.376	3.794	4.472	5.132	5.431
Outras secundárias de petróleo	3.956	3.522	3.953	3.853	3.750	4.469	5.224	4.984
Total	14.608	12.254	13.848	14.737	16.547	20.053	23.618	24.538

* Realizado

Fonte: BEN 2016 e elaboração própria

A produção de derivados de petróleo no cenário CPG é resultante da capacidade do parque de refino existente, levando-se em conta o aumento de eficiência e capacidade de processamento proporcionado pelo programa PROMEGA, acrescida da construção de novas refinarias (COMPERJ e RNEST), além de mais uma refinaria proposta neste estudo. Os gráficos abaixo mostram a capacidade total de refino ao longo do horizonte de estudo e o perfil de produção de derivados em 2050.

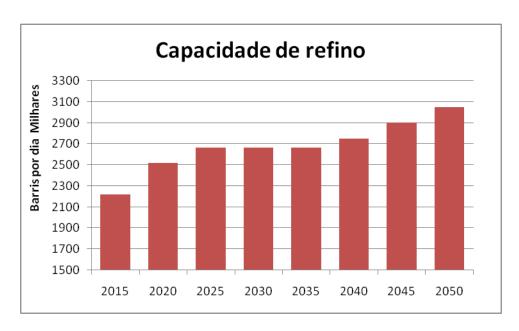


Figura 5. Capacidade de refino

Fonte: Elaboração própria

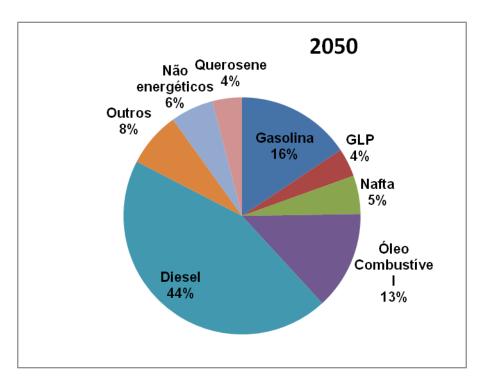


Figura 6. Perfil de produção de derivados

No caso das Unidades de Processamento de Gás Natural – UPGN considerou-se uma expansão de capacidade instalada que, por hipótese, acompanha automaticamente a evolução da produção de gás natural no país, partindo-se de uma capacidade de processamento de 95,3 M m3/dia em 2015, conforme dados do Anuário Estatístico da ANP. A Tabela 5 apresenta o perfil de produção considerado para estas unidades.

Tabela 5. Perfil de produção considerado para as UPGNs

C5+	GLP	Gás Seco	Outros não energéticos
7%	6%	81%	6%

Fonte: Elaboração própria

4. Principais Resultados

Inicialmente, cabe observar que o cenário de referência CPG, de expansão da oferta de energia no horizonte 2050, foi construído por diversos órgãos governamentais, com auxílio de modelos próprios de otimização da expansão da oferta de energia elétrica e de combustíveis e utilizando processos iterativos. Com base neste cenário inicial foi construído o conjunto de dados de entrada para o modelo de otimização MATRIZ, o qual calcula os fluxos nas diversas cadeias energéticas no horizonte 2050, que constituem os resultados do modelo.

Com base nas premissas e condicionantes adotados e na aplicação do modelo MATRIZ, foi possível extrair um conjunto de resultados ou indicadores principais, suficientes para se caracterizar o cenário CPG com relação aos objetivos deste estudo. Este conjunto compreende os cronogramas quinquenais de expansão das capacidades de produção de energia elétrica e de combustíveis (dados de entrada), bem como os respectivos níveis de atividade resultantes (geração de energia elétrica por fonte, refino de petróleo por refinaria, produção de gás natural, de etanol, de carvão vegetal, etc.), assim como as respectivas emissões potenciais de GEE associadas a esses níveis de atividade, conforme será apresentado a seguir.

4.1. Resultados relativos à Oferta de Energia Elétrica e suas emissões

Com relação ao sistema elétrico nacional (SIN), pode-se observar inicialmente que entre 2015 e 2050 a capacidade total instalada, que também é um dado de entrada para o modelo MATRIZ, apresenta um crescimento significativo, de quase 125 %, conforme mostrado na Tabela 6.

Tabela 6. Evolução da capacidade instalada no CPG (MW)

MW	2015	2020	2025	2030	2035	2040	2045	2050
Hidrelétricas	97044	115260	115260	115260	125643	129654	135136	139665
Nuclear	1990	3340	3340	3340	3340	3698	4695	4695
Gás natural	10938	13286	13286	13286	14290	14388	14388	14388
Carvão nacional	1644	1984	1984	1984	1065	2765	3625	3625
Carvão importado	1445	1445	1445	1445	1445	3325	3325	3325
Óleo combustível	3051	3051	2745	2405	332	0	0	0
Óleo Diesel	1124	1124	108	0	0	0	0	0
Outros não renováveis	703	703	703	703	776	789	810	810
PCH	5000	6600	6650	6650	8000	10000	12000	14000
Bagaço	10500	12717	12717	14397	14397	14397	15852	15852
Biomassa	1547	2102	2302	3721	4719	5716	6714	8709
Eólica	8700	14300	16694	19953	23943	27933	33919	39904

MW	2015	2020	2025	2030	2035	2040	2045	2050
Solar FV (distribuída)	20	300	4200	8320	12120	15920	19720	23520
Solar FV (centralizada)	0	2653	3451	3950	4449	14449	24448	29448
Solar heliotérmica	0	0	998	2095	6085	12070	18055	25038
TOTAL	143.706	178.865	185.883	197.509	220.604	255.104	292.687	322.979

Com relação à estrutura do parque gerador, a proporção relativa entre fontes convencionais de geração térmica (usinas a gás natural, nuclear, carvão, óleos combustíveis e outras não renováveis) e fontes renováveis (hidrelétrica, biomassa, eólica e solar) alterou-se significativamente, com a participação das fontes renováveis crescendo de 86% para 92% da potência instalada total entre 2015 e 2050. Observa-se que a estrutura interna das fontes renováveis se altera substancialmente, com a participação da fonte hidrelétrica se reduzindo de 71% para 48%, mas sendo substituída gradativamente pelas fontes eólica, biomassa e solar, cujas participações crescem de 14% para 44% da capacidade total instalada entre 2015 e 2050. Desta forma, no CPG, o setor elétrico mantém uma matriz elétrica de baixo carbono, sem perder competitividade econômica nem comprometer a confiabilidade do suprimento à demanda. A Tabela 7 apresenta a correspondente evolução da geração de energia elétrica por fonte ao longo do horizonte, enquanto a Tabela 8 apresenta os respectivos fatores de capacidade (FC) médios por fonte.

Tabela 7. Evolução da geração por fonte no CPG (MWano)

MWano	2015	2020	2025	2030	2035	2040	2045	2050
Hidrelétricas	43769	50976	60386	62284	68035	72186	75309	76375
Nuclear	1592	2671	2679	3013	3013	3336	4365	4224
Gás natural	9844	4267	4291	4721	5477	6907	8008	5585
Carvão nacional	822	992	996	1284	765	2080	2994	2713
Carvão importado	722	722	725	1086	1075	2501	2768	2489
Óleo combustível	0	0	91	481	67	0	0	0
Óleo Diesel	0	0	3	0	0	0	0	0
Outros não renováveis	0	0	10	12	51	53	85	58
PCH	2500	3300	3325	3325	4000	5000	6000	7000
Bagaço	5460	6613	6613	7487	7487	7487	8243	8243
Biomassa	910	965	1178	2548	3098	3943	4940	6223
Eólica	3822	6209	7286	8753	10548	12344	14759	17305
Solar FV (distribuída)	3	54	752	1488	2167	2846	3524	4203
Solar FV (centralizada)	0	672	864	984	1103	3603	6103	7303
Solar heliotérmica	0	0	549	1152	3346	6590	9832	13573
TOTAL	69.444	77.442	89.747	98.618	110.232	128.876	146.929	155.294

Fonte: Elaboração própria

Tabela 8. Evolução do fator de capacidade no CPG (%)

FC (%)	2015	2020	2025	2030	2035	2040	2045	2050
Hidrelétricas	45%	44%	52%	54%	54%	56%	56%	55%
Nuclear	80%	80%	80%	90%	90%	90%	93%	90%
Gás Natural	90%	32%	32%	36%	38%	48%	56%	39%
Carvão nacional	50%	50%	50%	65%	72%	75%	83%	75%
Carvão importado	50%	50%	50%	75%	74%	75%	83%	75%
Óleo Combustível	0%	0%	3%	20%	20%	*	*	*
Óleo Diesel	0%	0%	2%	*	*	*	*	*
Outros não renováveis	0%	0%	1%	2%	7%	7%	10%	7%
РСН	50%	50%	50%	50%	50%	50%	50%	50%
Bagaço	52%	52%	52%	52%	52%	52%	52%	52%
Biomassa	59%	46%	51%	68%	66%	69%	74%	71%
Eólica	44%	43%	44%	44%	44%	44%	44%	43%
Solar FV (distribuída)	17%	18%	18%	18%	18%	18%	18%	18%
Solar FV (centralizada)	*	25%	25%	25%	25%	25%	25%	25%
Solar heliotérmica	*	*	55%	55%	55%	55%	54%	54%
TOTAL	48%	43%	48%	50%	50%	51%	50%	48%

Fonte: Elaboração própria. Nota: Valores arredondados

Tabela 9. Participação por fonte na geração total de energia elétrica (%)

Participação (%)	2015	2020	2025	2030	2035	2040	2045	2050
Hidrelétricas	63,0%	65,8%	67,3%	63,2%	61,7%	56,0%	51,3%	49,2%
Nuclear	2,3%	3,4%	3,0%	3,1%	2,7%	2,6%	3,0%	2,7%
Gás natural	14,2%	5,5%	4,8%	4,8%	5,0%	5,4%	5,5%	3,6%
Carvão nacional	1,2%	1,3%	1,1%	1,3%	0,7%	1,6%	2,0%	1,7%
Carvão importado	1,0%	0,9%	0,8%	1,1%	1,0%	1,9%	1,9%	1,6%
Óleo combustível	0,0%	0,0%	0,1%	0,5%	0,1%	0,0%	0,0%	0,0%
Óleo Diesel	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Outros não rnováveis	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,1%	0,0%
PCH	3,6%	4,3%	3,7%	3,4%	3,6%	3,9%	4,1%	4,5%
Bagaço	7,9%	8,5%	7,4%	7,6%	6,8%	5,8%	5,6%	5,3%
Biomassa	1,3%	1,2%	1,3%	2,6%	2,8%	3,1%	3,4%	4,0%
Eólica	5,5%	8,0%	8,1%	8,9%	9,6%	9,6%	10,0%	11,1%
Solar FV (distribuída)	0,0%	0,1%	0,8%	1,5%	2,0%	2,2%	2,4%	2,7%
Solar FV (centralizada)	0,0%	0,9%	1,0%	1,0%	1,0%	2,8%	4,2%	4,7%
Solar heliotérmica	0,0%	0,0%	0,6%	1,2%	3,0%	5,1%	6,7%	8,7%
TOTAL	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%

^{*} Potência instalada igual a zero, não há FC.

Finalmente, com relação ao cálculo das emissões correspondentes à geração termelétrica das diversas fontes e das transformações referentes à obtenção do carvão vegetal e queima direta da lenha, pode-se constatar que no cenário CPG, elas aumentam pouco entre 2015 e 2050. Entretanto, ressalta-se que o ano de 2015 foi atípico em termos de emissões do setor elétrico, pois houve um montante elevado de geração termelétrica. Comparando-se com o ano de 2020, observa-se que as emissões duplicam em 2050. Vale observar ainda que as pequenas emissões da fonte renovável à biomassa correspondem às emissões de GEE não-CO2 (ou seja, CH4 e N2O) decorrentes da queima da biomassa em usinas termelétricas.

Tabela 10. Evolução das emissões da geração termelétrica e carvoejamento no CPG (MtCO₂eq)

MtCO2eq	2015*	2020	2025	2030	2035	2040	2045	2050
Gás Natural	38,80	17,56	17,66	19,43	22,54	28,43	32,96	22,99
Carvão	18,16	13,39	13,45	18,37	13,87	34,86	44,50	40,20
Óleo Diesel	7,07	0,00	0,02	0,00	0,00	0,00	0,00	0,00
Óleo Combustível	10,75	0,00	0,57	3,04	0,42	0,00	0,00	0,00
Outros Não Renováveis	2,44	0,00	0,06	0,08	0,37	0,40	0,59	0,43
Carvoaria	0,59	0,51	0,64	0,64	0,68	0,89	1,07	1,05
Lenha queima direta	0,04	0,02	0,05	0,16	0,26	0,40	0,57	0,79
Bagaço	0,47	0,84	0,84	0,95	0,95	0,95	1,04	1,04
TOTAL	78,33	32,31	33,29	42,67	39,09	65,91	80,73	66,50

* Realizado Fonte: BEN 2016 e elaboração própria

4.2. Resultados relativos à Oferta de Combustíveis e suas emissões

Com relação à oferta de petróleo bruto, o cenário CPG se caracteriza por uma significativa expansão da extração de óleo bruto no país, apresentando um crescimento de 2,7% ao ano entre 2015 e 2050, atingindo a expressiva marca de 5,5 milhões de barris por dia (Mbbl/dia), devido principalmente à exploração das grandes reservas do pré-sal.

Tabela 11. Evolução da oferta de petróleo no CPG (Mbbl/dia)

Petróleo (Mbbl/dia)	2015	2020	2030	2040	2050
Extração de óleo	2,20	2,50	3,40	4,50	5,50
Importação de óleo	0,34	0,34	0,34	0,34	0,34

Fonte: Elaboração própria

Consequentemente, conforme mostrado na Tabela 11, o país passaria a exportador de petróleo bruto, atingindo o nível de exportações de 2,75 Mbbl/dia em 2050, nível este equivalente à produção do México em 2015, segundo a IEA.

Tabela 12. Evolução da oferta de gás natural no CPG (M m³/dia)

Gás Natural (M m³/dia)	2015	2020	2030	2040	2050
Produção (descontado reinjeção e perdas)	62,3	67,6	92,5	130,4	159,4
Importação GNL	32,7	1,8	1,9	27,4	34,2
Importação Bolívia	30,9	30,9	30,9	30,9	30,9
Oferta	125,9	100,3	125,2	188,6	224,4

Consistentemente com a grande expansão da extração de óleo bruto, a produção nacional de gás natural (principalmente gás associado) também cresce a 2,7% ao ano entre 2015 e 2050 (Tabela 12). Ainda assim, dado o grande aumento da demanda por GN no período, decorrente principalmente de sua maior utilização para a geração termelétrica, a importação de GN da Bolívia se mantém, enquanto as importações de GNL crescem no período, à exceção de 2020 e 2030, quando ocorre uma forte expansão da produção nacional.

Tabela 13. Evolução da produção anual de combustíveis no CPG (ktep)

		Die	sel							
	2015	2020	2030	2040	2050					
prod + imp	44793,6	42845,6	50653,6	54760,4	63000,8					
prod	41689,6	42845,6	50653,6	54760,4	63000,8					
imp/prod (%)	7,45%	0,00%	0,00%	0,00%	0,00%					
Gasolina										
	2015	2020	2030	2040	2050					
prod + imp	23125,2	19098,8	21416,4	22160	22160					
prod	19808	19098,8	21416,4	22160	22160					
imp/prod (%)	16,75%	0,00%	0,00%	0,00%	0,00%					
		GL	.Р							
	2015	2020	2030	2040	2050					
prod + imp	6854,9	7759,1	8812,9	9151,8	8988,4					
prod	4563,2	4042,4	4812,8	5095,6	5502					
imp/prod (%)	50,22%	91,94%	83,11%	79,60%	63,37%					
		Quero	sene							
	2015	2020	2030	2040	2050					
prod + imp	4148,4	3940,8	5534,8	7258	8954,4					
prod	4148,4	3940,8	5534,8	5726,8	5726,8					
imp/prod (%)	0,00%	0,00%	0,00%	26,74%	56,36%					
		Nat	fta							
	2015	2020	2030	2040	2050					
prod + imp	6373,2	7223,6	10828,8	14727,6	17504,8					
prod	4044,4	3840	6136	6592,8	7448					
imp/prod (%)	57,58%	88,11%	76,48%	123,39%	135,03%					
Óleo Combustível										
	2015	2020	2030	2040	2050					
prod + imp	14622,8	13540,8	15641,2	16819,6	19047,6					
prod	14622,8	13540,8	15641,2	16819,6	19047,6					
imp/prod (%)	0,00%	0,00%	0,00%	0,00%	0,00%					

	Outras Secundárias de Petróleo										
	2015	2020	2030	2040	2050						
prod + imp	11056,4	12413,6	13696	16367,6	18328,8						
prod	8088,8	7477,6	8783,2	9439,6	10672,8						
imp/prod (%)	36,69%	66,01%	55,93%	73,39%	71,73%						
		Não Energético	os do Petróleo								
	2015	2020	2030	2040	2050						
prod + imp	7604,1	7510,1	10242,9	13472,2	16718,6						
prod	6326,4	5860,8	6858,4	7371,6	8338,8						
imp/prod (%)	20,20%	28,14%	49,35%	82,76%	100,49%						

Com relação à oferta de combustíveis (derivados de petróleo, etanol e gás natural), a Tabela 13 mostra que, em 2050 no cenário CPG, o país continuará a necessitar de importações de querosene, de nafta e de GLP. Entretanto, para os demais combustíveis observa-se um excedente exportável em 2050, com destaque para a gasolina, devido à diminuição da demanda interna desse combustível.

A estrutura da oferta de energia no cenário CPG fica perfeitamente caracterizada por sua correspondente Matriz Energética Nacional. Para ilustrar a evolução dessa estrutura no horizonte 2050, apresentamos inicialmente os tradicionais gráficos tipo "pizza", calculados para 2014, 2030 e 2050. Nas figuras (Figura 7, 8 e 9), apresenta-se a participação relativa (%) de cada agrupamento de fontes primárias na oferta total de energia, utilizando-se a mesma classificação de fontes adotada no BEN.

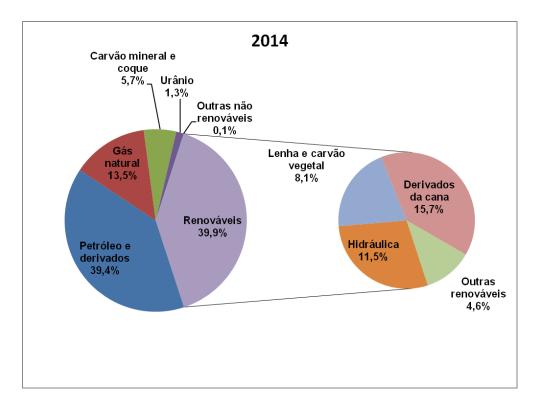


Figura 7. Matriz Energética em 2014 (%)

Fonte: BEN 2015

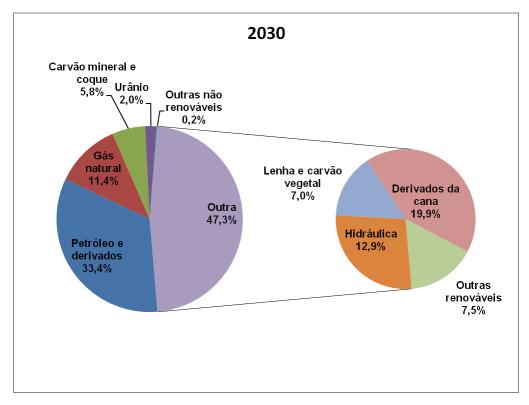


Figura 8. Matriz Energética em 2030 (%)

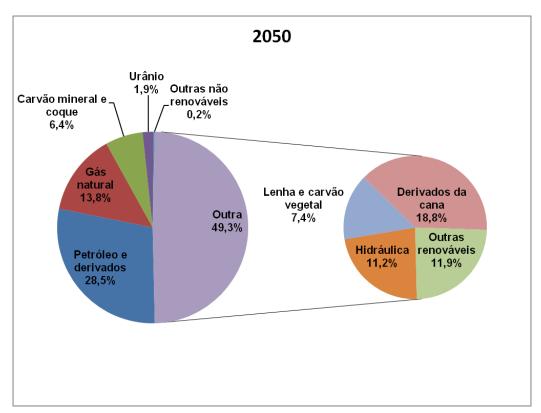


Figura 9. Matriz Energética em 2050 (%)

Fonte: Elaboração própria

Da análise dos gráficos acima, observa-se que, entre as renováveis, a energia hidráulica se mantém estável enquanto a participação de derivados da cana e outras renováveis aumenta significativamente. Por outro lado, a maior redução ocorre na participação de petróleo e derivados. Isso pode ser explicado pela alteração na demanda do setor de transporte, com diminuição no uso da gasolina e maior uso de etanol e eletricidade. Infelizmente, os gráficos acima não permitem visualizar claramente a importante mudança ocorrida na estrutura da oferta de energia elétrica, pois esta se encontra integrada à oferta de combustíveis e de energia renovável destinada a outros fins que não a geração de eletricidade. Assim, no presente estudo preferimos apresentar a Oferta Interna de Energia (OIE) em valores absolutos (Mtep) e de forma um pouco mais estratificada, separando-se a oferta de energia elétrica do restante da oferta energética, conforme mostrado na Tabela 14.

Tabela 14. Oferta Interna de Energia no cenário CPG (Mtep)

Oferta Interna Bruta (Mtep)	2010*	2020	2030	2040	2050		
Hidrelétricas e importação	37,7	40,2	45,4	54,0	58,6		
Derivados da Cana	4,1	10,5	11,9	11,9	13,1		
Lenha	0,3	0,2	1,8	4,4	8,7		
Outras renováveis	2,4	6,7	12,0	21,8	34,7		
Nuclear	3,8	6,1	6,9	7,6	9,6		
Gás Natural – UTE	7,0	7,4	8,2	12,0	9,7		
Carvão Mineral – UTE	1,9	3,3	4,6	8,6	10,0		
Óleo Combustível – UTE	1,1	0,0	0,9	0,0	0,0		
Óleo Diesel – UTE	2,2	0,0	0,0	0,0	0,0		
Outros Não Renováveis	0,8	0,0	0,0	0,1	0,1		
Subtotal – Eletricidade	61,2	74,5	91,8	120,5	144,5		
% de fontes renováveis	73%	77%	78%	76%	80%		
Petróleo e Derivados	98,0	98,6	111,0	124,9	138,7		
Gás Natural	20,5	24,8	32,0	48,6	62,4		
Carvão Mineral e Coque	12,2	14,7	15,8	21,1	23,4		
Derivados da Cana	43,0	44,5	58,2	72,9	85,5		
Outras renováveis ¹	33,8	34,9	43,7	58,1	67,8		
Outras não renováveis ²	0,1	0,4	0,6	0,8	1,0		
Subtotal – Combustíveis	207,6	217,8	261,4	326,4	378,8		
% de fontes renováveis	37%	36%	39%	40%	40%		
TOTAL	268,8	292,3	353,2	446,9	523,4		
% de fontes renováveis	45,0%	46,9%	49,0%	49,9%	51,3%		
% de fontes renováveis sem hidrelétricas	31,0%	33,1%	36,1%	37,9%	40,1%		
% derivados de cana	18,0%	18,8%	19,9%	19,0%	18,8%		
% cana + biodiesel		19,8%	21,1%	20,0%	20,1%		

Fonte: BEN 2016 e elaboração própria

* Realizado

Obs: 1) Inclui biodiesel, eólica, solar, lixívia e outros resíduos de biomassa 2) inclui líquidos de gás natural e outros resíduos não renováveis.

Da análise da Tabela 14 pode-se observar que, a participação de renováveis no setor elétrico se mantém estável ao longo do horizonte, embora haja uma gradativa substituição de hidráulica por outras renováveis, como eólica e solar. Considerando as fontes não usadas para geração de eletricidade, a participação de renováveis tende a aumentar, mas ainda assim predominam as fontes não renováveis.

Por fim, apresentam-se na Tabela 15 e na Tabela 16 as emissões de GEE decorrentes das emissões fugitivas da produção de óleo e gás natural (E&P, refino e UPGN) no cenário CPG e as emissões referentes à demanda do setor energético. Na Tabela 15 pode-se observar um aumento significativo das fugitivas de óleo e gás, por conta do aumento da produção considerado no estudo. Além disso, há um aumento nas emissões fugitivas decorrentes da extração de carvão, devido à ampliação de geração de energia elétrica a partir dessa fonte.

Tabela 15. Evolução das emissões fugitivas no CPG (2015-2050)

Emissões fugitivas (MtCO _{2eq)}	2015*	2020	2030	2040	2050
E&P	12,05	13,56	18,47	24,78	30,25
Refino	8,61	8,39	9,99	10,67	11,84
Carvão	2,33	2,92	0,00	4,82	6,05
Total	22,99	24,87	28,47	40,28	48,13

* Realizado

Fonte: BEN 2016 e elaboração própria

Tabela 16. Evolução das emissões do consumo energético do setor energético no CPG (2015-2050)

MtCO2eq	2015*	2020	2025	2030	2035	2040	2045	2050
Gás natural	14,43	13,27	14,85	16,69	19,90	24,20	28,84	30,76
Óleo diesel	3,89	3,27	3,47	3,85	4,13	4,38	4,70	4,97
Óleo combustível	0,80	1,29	1,40	1,47	1,58	1,88	2,13	2,20
GLP	0,08	0,07	0,07	0,08	0,08	0,09	0,09	0,09
Gás de cidade e de coqueria	0,35	0,41	0,50	0,50	0,61	0,85	1,02	0,99
Outras secundárias de petróleo	9,58	8,53	9,57	9,33	9,08	10,82	12,65	12,07
Produtos da cana	1,05	1,08	1,22	1,40	1,58	1,77	1,88	1,99
TOTAL	30,18	27,91	31,08	33,33	36,96	43,99	51,31	53,07

* Realizado

Fonte: BEN 2016 e elaboração própria

Cabe ressaltar ainda que todos os resultados apresentados neste item correspondem aos resultados obtidos com o Modelo MATRIZ após a última iteração com o Modelo IMACLIM-BR. Vale lembrar que a cada iteração do processo iterativo de convergência do modelo "top-down" com os modelos "bottom-up", o modelo IMACLIM-BR recalcula novas demandas energéticas quinquenais para o CPG, afetando a geração e o consumo em todos os modelos setoriais. Nesse sentido, os novos valores de demanda energética, após consolidados pelo modelo LEAP, foram fornecidos ao Modelo MATRIZ, havendo novas rodadas para se calcular os novos valores de geração/produção de energia e de suas correspondentes emissões associadas.

5. Conclusões

A análise dos resultados obtidos para o CPG, apresentados no item 4, permite concluir que este cenário de Oferta de Energia atenderia plenamente as metas estabelecidas na iNDC brasileira para este setor no ano de 2030.

Pode-se verificar que em 2030 a participação da bioenergia na Matriz Energética Brasileira (MEB) atingiria 20%, e a das fontes renováveis sem incluir hidroeletricidade ultrapassaria 34%. No total, a participação de fontes renováveis na MEB alcançaria 47%, uma das mais altas do mundo, revertendo completamente a tendência declinante observada nos últimos anos, quando este índice se reduziu de 45% em 2010 para 39% em 2014.

Com relação à geração de energia elétrica, foi possível assegurar uma participação de pelo menos 66% de geração hidrelétrica (em UHEs e PCHs), apesar das crescentes dificuldades para se aproveitar o potencial hidrelétrico remanescente da Amazônia, e ao mesmo tempo aumentar a participação das demais fontes renováveis para 23%, exatamente conforme estabelecido na iNDC.

Podemos acrescentar ainda que no período 2030 a 2050, segundo o CPG, permanece a tendência de aumento de participação das fontes renováveis tanto na geração de energia elétrica, onde chegaria a 80%, quanto na oferta de combustíveis, onde aumenta de 37% para 38%. No total, a participação total das fontes renováveis na MEB em 2050 atingiria 49%, empatando praticamente com as fontes fósseis.

Por fim, cabe ressaltar que o país ainda dispõe de muitas opções de fontes de energia renovável, aliadas a novas tecnologias para armazenamento e transporte de energia, as quais poderão ter sua viabilidade técnica-econômica e socioambiental assegurada no período 2030 a 2050, conforme será indicado no próximo item.

6. Prospecção tecnológica para Cenários de Mitigação

Este item apresenta uma lista de novas tecnologias para produção, armazenamento e transporte de energia que, adicionalmente às tecnologias já incluídas no CPG, podem ser consideradas futuramente nas simulações de cenários de mitigação de emissões de GEE no Brasil no horizonte 2050. Tais tecnologias foram analisadas e discutidas preliminarmente pelo Comitê de Elaboração de Cenários (CEC) do projeto IES2 no Workshop "Tecnologias de Mitigação de Emissões de Gases de Efeito Estufa (GEE) no Brasil até 2050", realizado em 7 de junho de 2016, no Hotel Windsor Atlântica, no Rio de Janeiro. Neste workshop, foram avaliadas algumas tecnologias de geração de energia elétrica não-emissoras de GEE que estão em estágio avançado de desenvolvimento e que poderiam entrar em operação comercial no horizonte de tempo considerado. Dentre as tecnologias consideradas viáveis, pode-se destacar algumas cujos parâmetros técnico-econômicos são mais conhecidos, tais como, a eólica offshore, a heliotérmica hibridizada com biomassa (em vez de usar armazenamento térmico), a oceânica (baseada em ondas e correntes marítimas) e a geotérmica. Adicionalmente, foram sugeridas também algumas tecnologias do grupo "carvão limpo", tais como, carvão pulverizado com captura geológica de carbono (CCS) e coqueima de carvão com biomassa. A Tabela 17 sintetiza estas tecnologias.

Tabela 17. Novas tecnologias de oferta de energia para no horizonte de 2050 (adicionais às do cenário CPG)

Tecnologias	Potência Total (MW)	Custo O&M Fixo (US\$/kW- ano)	Custo O&M Variável (US\$/MWh)	Tempo de Construção (anos)	Vida Útil (anos)	Custo de Investiment o (US\$/kW)
Geração Eólica "off-shore"	400	74	-	2	20	6.200
Geração Heliotérmica hibridizada com biomassa	100	37	-	4	20	4.000
Geração Oceânica (aproveitando ondas e correntes maritmas)	100	-	-		20	8.000
Geração Geotérmica	50	132	-	2	20	6.200
UTE carvão pulverizado com CCS	650	81	9,5	4	35	5.200
UTE coqueima carvão/biomassa	500	50	40	4	35	5.000

Fonte: EIA/DOE

A geração eólica *offshore* é a mais promissora dessas tecnologias devido à grande extensão do litoral brasileiro e às excepcionais condições do mar e do vento existentes em alguns locais, principalmente no litoral norte-nordeste. Entretanto, esta tecnologia ainda deverá sofrer por muito tempo a competição com a geração eólica *onshore*, que também dispõe de um excelente potencial no país e é

bem mais econômica, além de barreiras não econômicas, tais como, a dificuldade de conexão ao grid e restrições ambientais.

A geração heliotérmica hibridizada com biomassa representa uma alternativa para a geração heliotérmica de eletricidade (STE) concentrada em concessionárias, onde a unidade de armazenamento térmico é substituída por uma caldeira cujo combustível é algum tipo de biomassa, disponível em grande quantidade e armazenável no local da usina, podendo ser despachada continuamente durante todo o ano, com alto grau de confiabilidade (também em períodos críticos), representando assim uma alternativa renovável de geração térmica bastante adequada ao sistema brasileiro. Estima-se que a viabilidade comercial desta tecnologia deva crescer rapidamente nas próximas décadas.

A geração oceânica com base principalmente no aproveitamento da energia das ondas e das correntes marítimas também pode vir a ter um papel mais significativo na matriz elétrica brasileira por razões semelhantes à da energia eólica *offshore*: grande extensão do litoral brasileiro e excepcionais condições em alguns locais. Até o momento, seu custo médio de geração ainda é excessivamente alto, não conseguindo competir com as demais fontes renováveis. Segundo o relatório ETP 2015 da IEA, ainda existem poucos projetos de demonstração da geração oceânica no mundo hoje. Entretanto, muito embora de um modo geral o custo de geração das fontes renováveis seja mais alto que o das fontes convencionais, este "gap" foi reduzido significativamente nas ultimas décadas. Sendo assim, no longo prazo, podem ainda vir a ocorrer desenvolvimentos significativos que assegurem a viabilidade comercial dessa tecnologia no Brasil.

Com relação à geração geotérmica, o relatório ETP 2015 aponta que seu potencial para geração de energia elétrica permanece ainda altamente inexplorado no mundo. Os riscos do prédesenvolvimento são ainda muito altos e apenas um pequeno grupo de países introduziu políticas para minimizar estes riscos. O Brasil também não aparenta ser um país com ocorrências naturais promissoras da fonte geotérmica, o que não estimula grandes investimentos nessa tecnologia. Tais ocorrências, entretanto, podem ainda aparecer como subproduto da indústria do petróleo, em particular, na exploração dos recursos do "pré-sal".

Finalmente, as tecnologias ditas de "carvão limpo" sugeridas pelo CEC, quais sejam, a UTE a carvão pulverizado com CCS e a UTE a coqueima de carvão com biomassa, representam uma tentativa de se encontrar uma forma sustentável de aproveitamento das grandes reservas de carvão mineral existentes no sul do país e que ainda hoje desempenham um papel importante para a economia e geração de empregos na região. Resta verificar se no longo prazo estas tecnologias limpas atingirão

ou não sua viabilidade comercial, o que poderá ocorrer devido ao intenso esforço de desenvolvimento tecnológico em curso em outros países, os quais dependem bem mais que o Brasil da utilização de suas reservas de carvão mineral.

Além das tecnologias de geração de energia elétrica apresentadas na tabela 15, poderiam ser mencionadas também outras tecnologias que contribuem para a mitigação de emissões de GEE, tais como, o etanol celulósico de segunda geração, a produção de pellets e briquetes de biomassa, as redes inteligentes para distribuição de energia elétrica (e sua interface com veículos elétricos) e o armazenamento direto de energia elétrica (em baterias e outros dispositivos, como nos próprios veículos elétricos). Todas estas tecnologias serão competitivas no horizonte de tempo do estudo de acordo com o CEC, mas não foi possível encontrar projeções confiáveis para os valores dos parâmetros técnico-econômicas dessas tecnologias no horizonte 2050.

7. Referências Bibliográficas

- PEREIRA JR, A. O.; COSTA, R. C.; COSTA, C. V.; MARRECO, J. M.; LA ROVERE, E. L. Perspectives for the expansion of new renewable energy sources in Brazil. Renewable and Sustainable Energy Reviews 23, 2013, pp. 49–59. Disponível em: http://www.lima.coppe.ufrj.br/files/PerspectivesForTheExpansion.pdf.
- 2. WEIO WORLD ENERGY INVESTMENT OUTLOOK. World Energy Investment Outlook Special Report. International Energy Agency, IEA, Paris, 2014. Disponível em: http://www.iea.org/publications/freepublications/publication/weio2014.pdf.
- 3. IPCC (2006) -. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Disponível em: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
- 4. EPE (2015) Plano Nacional de Energia PNE 2050. Disponível em: http://www.epe.gov.br/Estudos/Paginas/default.aspx?CategoriaID=346
- 5. EPE (2015) Plano Decenal de Energia PDE 2023. Disponível em: http://www.epe.gov.br/Estudos/Paginas/default.aspx?CategoriaID=345
- EPE (2015) Balanço Energético Nacional BEN 2014. Disponível em: http://www.epe.gov.br/Estudos/Paginas/ default.aspx?CategoriaID=347
- International Institute for Applied Systems Analysis IIASA (2015) Modelo MESSAGE (Model for Energy Supply
 System Alternatives and their General Environmental Impacts). Disponível
 em:http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/MESSAGE.en.html
- 8. LA ROVERE, E. L. et al; Implicações Econômicas e Sociais de Cenários de Mitigação de Gases de Efeito Estufa no Brasil até 2030: Sumario Técnico/ Projeto IES-Brasil, Forum Brasileiro de mudanças Climáticas FBMC. COPPE/UFRJ, Rio de Janeiro, 2016.
- 9. International Energy Agency (IEA) Energy Technology Perspectives (ETP 2015), disponível em: http://www.iea.org/etp/etp2015/http://www.iea.org/t&c/